Motion mechanisms in macaque MT.
نویسندگان
چکیده
The macaque middle temporal area (MT) is exquisitely sensitive to visual motion and there is a large amount of evidence that neural activity in MT is tightly correlated with the perception of motion. The mechanisms by which MT neurons achieve their directional selectivity, however, have received considerably less attention. We investigated the motion-energy model as a description of motion mechanisms in macaque MT. We first confirmed one of the predictions of the motion-energy model; macaques-just like humans-perceive a reversed direction of motion when a stimulus reverses contrast with every displacement (reverse-phi). This reversal of perceived direction had a clear correlate in the neural responses of MT cells, which were predictive of the monkey's behavioral decisions. Second, we investigated how multiple motion-energy components are combined. Psychophysical data have been used to argue that motion-energy components representing opposite directions are subtracted from each other. Our data show, however, that the interactions among motion-energy components are more complex. In particular, we found that the influence of a given component on the response to a stimulus consisting of multiple components depends on factors other than the response to that component alone. This suggests that there are subthreshold nonlinear interactions among multiple motion-energy components; these could take place within MT or in earlier stages of the motion network such as V1. We propose a model that captures the complexity of these component interactions by means of a competitive interaction among the components. This provides a better description of the MT responses than the subtractive motion opponency envisaged in the motion-energy model, even when the latter is combined with a gain-control mechanism. The competitive interaction extends the dynamic range of the cells and allows them to provide information on more subtle changes in motion patterns, including changes that are not purely directional.
منابع مشابه
Motion opponency in visual cortex.
Perceptual studies suggest that visual motion perception is mediated by opponent mechanisms that correspond to mutually suppressive populations of neurons sensitive to motions in opposite directions. We tested for a neuronal correlate of motion opponency using functional magnetic resonance imaging (fMRI) to measure brain activity in human visual cortex. There was strong motion opponency in a se...
متن کاملBrief motion stimuli preferentially activate surround-suppressed neurons in macaque visual area MT
generally found that observers rely on whichever neurons are most informative about the stimulus to perform similar psychophysical tasks [6]. Here we show that the responses of neurons in the middle temporal (MT) area of macaque monkeys provide a simple resolution to this paradox. We find that surroundsuppressed MT neurons integrate motion signals relatively quickly, so that by comparison non-s...
متن کاملMotion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT.
Mechanisms of direction selectivity and speed selectivity were studied in single neurons of the middle temporal visual area (MT) of behaving macaque monkeys. Visual stimuli were presented in both smooth and stroboscopic motion within a neuron's receptive field as the monkey fixated a stationary point of light. Direction selectivity, speed selectivity, and the spontaneous discharge characteristi...
متن کاملDirection and orientation selectivity of neurons in visual area MT of the macaque.
We recorded from single neurons in the middle temporal visual area (MT) of the macaque monkey and studied their direction and orientation selectivity. We also recorded from single striate cortex (V1) neurons in order to make direct comparisons with our observations in area MT. All animals were immobilized and anesthetized with nitrous oxide. Direction selectivity of 110 MT neurons was studied w...
متن کاملProcessing of first- and second-order motion signals by neurons in area MT of the macaque monkey.
Extrastriate cortical area MT is thought to process behaviorally important visual motion signals. Psychophysical studies suggest that visual motion signals may be analyzed by multiple mechanisms, a "first-order" one based on luminance, and a "second-order" one based upon higher level cues (e.g. contrast, flicker). Second-order motion is visible to human observers, but should be invisible to fir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 93 5 شماره
صفحات -
تاریخ انتشار 2005